2026年1月24日 星期六

【半導體科普】CoWoS 是什麼?為何 NVIDIA、AMD 都在搶?一次看懂台積電的先進封裝秘密

 


前言:AI 時代的真正瓶頸不是晶片,而是「封裝」

在生成式 AI 爆發的現在,大家都在討論 GPU 的算力有多強,NVIDIA 的股價又漲了多少。但你有沒有發現,新聞常常提到「產能不足」?其實,卡住出貨的瓶頸往往不是核心晶片本身,而是將這些晶片組裝在一起的技術——先進封裝(Advanced Packaging)

而在這場封裝戰爭中,台積電的 CoWoS (Chip-on-Wafer-on-Substrate) 技術,就是那個讓 NVIDIA、AMD 甚至 Google 都排隊搶著要的「聖杯」。今天,我們就以自動化工程師的視角,深入淺出地拆解 CoWoS 到底是什麼?以及它旗下的 S、R、L 三種製程究竟有何不同。


一、 CoWoS 到底是什麼?五個字母的秘密

很多專有名詞看名字就能知道結構。CoWoS 也不例外,它的全名是 Chip-on-Wafer-on-Substrate。我們可以把它想像成一個「三層三明治」結構:

  1. 頂層 (Chip): 這是餡料。包含負責運算的邏輯晶片(如 GPU/CPU)以及負責存取資料的高頻寬記憶體(HBM)。

  2. 中層 (Wafer / Interposer): 這是夾層麵包,也是 CoWoS 的核心。我們稱為「中介層」。它負責提供超高密度的線路,讓頂層的 GPU 和 HBM 能夠像鄰居一樣快速溝通。

  3. 底層 (Substrate): 這是底層盤子。通常是 ABF載板,負責將封裝好的晶片連接到外部的電路板(PCB)上。

為什麼需要 CoWoS? 因為「摩爾定律」變慢了。要把晶片做得更小越來越難,成本也越來越高。於是工程師想出了一個辦法:「既然做不小,那我們就把它們『疊』起來,並且『拼』在一起。」 CoWoS 讓處理器和記憶體靠得非常近,大幅解決了傳輸速度(頻寬)的問題,這正是 AI 模型訓練最需要的。


二、 CoWoS 的三種型態:S、R、L 大解密

台積電的 CoWoS 並非只有一種,根據**「中介層(中間那層麵包)」的材質不同**,分為三種主要製程。這也是近期 NVIDIA 晶片世代交替的關鍵所在。



1. CoWoS-S (Silicon Interposer / 矽中介層)

  • 特點: 這是最經典、技術最成熟的版本。中間層使用一片完整的「矽晶圓」來製作。

  • 優勢: 矽的蝕刻技術非常成熟,線路可以做得極度細密,傳輸效能最好,散熱導熱性也佳。

  • 限制: 貴!而且受限於光罩尺寸(Reticle Limit)。簡單說,因為是用矽晶圓做的,它沒辦法做得太大,大概只能塞進一顆 GPU 加上 6 顆 HBM。

  • 代表產品: NVIDIA H100、AMD MI300。

2. CoWoS-R (RDL Interposer / 重佈線層)

  • 特點: 拿掉昂貴的矽中介層,改用有機材料的 RDL(重佈線層)來連接。

  • 優勢: 成本較低,且因為是有機材料,比較有彈性,不容易因為熱脹冷縮而破裂(可靠度高)。

  • 定位: 適合對成本敏感,但仍需要先進封裝的網通或邊緣運算產品。

3. CoWoS-L (Local Silicon Interconnect / 局部矽互連)

  • 特點: 它是 S 和 R 的混血兒,也是未來的主流。主體是有機載板(便宜、可做大),但在晶片與晶片需要高速溝通的「關鍵路口」,埋入小塊的矽橋(LSI)。

  • 優勢: 結合了有機載板「可做超大尺寸」的優點,與矽橋「高密度傳輸」的特性。這突破了 CoWoS-S 的光罩尺寸限制,可以把封裝面積做得比手掌還大!

  • 代表產品: NVIDIA Blackwell B200、GB200。


三、 從 H100 到 B200:為何 NVIDIA 轉向 CoWoS-L?

這是一個非常精彩的技術轉折。

H100 時代,NVIDIA 追求極致的穩定與成熟,選擇了 CoWoS-S。這也是為什麼 H100 的效能這麼強,但產能卻一直受限於台積電矽中介層產能的原因之一。

到了 Blackwell (B200) 時代,單一顆晶片已經不夠快了。NVIDIA 決定把兩顆大晶片「拼」在一起,變成一顆超級晶片。 這時候,傳統的 CoWoS-S 就遇到瓶頸了——它塞不下這麼大的面積!

於是,NVIDIA 轉向擁抱 CoWoS-L。透過 CoWoS-L 技術,台積電成功將兩顆運算晶片和 8 顆 HBM3e 記憶體封裝在同一個基板上,實現了 10 TB/s 的驚人傳輸速度。雖然 CoWoS-L 的製程複雜度更高、良率挑戰更大,但這是通往下一代 AI 算力的唯一道路。


結語:封裝工程師的黃金時代

看完這篇,你應該對 CoWoS 有了更深一層的認識。未來的晶片戰爭,不再只是比誰的奈米製程更先進(那是前段製程的事),更要比誰能把這些晶片封裝得更巧妙、更緊密(這是後段封裝的事)。

下一代,我們即將迎來 3nm 製程HBM4 的結合,屆時 CoWoS-L 將會進化得更巨大、更複雜。作為一名自動化工程師,看著這些物理極限被一步步突破,實在是令人熱血沸騰!

2026年1月22日 星期四

Tesla 2026電池大爆發!4680四種NC新版本來了,但韓國訂單砍99%是壞兆頭?

 


根據The Information等權威媒體內幕消息,Tesla正全力衝刺自家4680電池的下一代升級版——內部代號「NC系列」(New Cell),預計2026年推出四種全新版本,全都採用從2020年Battery Day就夢寐以求的**乾式陰極(dry cathode)**工藝,大幅降低成本、提升能量密度與生產良率!
四款NC電池重點:

NC05:老黃牛workhorse版,專為Robotaxi/Cybercab設計,超耐用長壽命,也可能用在Semi卡車,目標讓Robotaxi跑更久、更省錢!
NC20:能量密度更高,適合Cybertruck與未來電動SUV,讓大車續航更猛、充電更快。
NC30 & NC50:最強版本!首次在陽極加入矽碳(silicon-carbon)材料,矽比例從8%起步逐步優化,NC30用在Cybertruck高階版或未來轎車,NC50則是高性能神器(第二代Roadster專用?)。

但好消息同時伴隨壞消息:韓國電池材料商L&F原本29億美元的高鎳陰極合約(專供4680),2025年底公告縮水到只剩7,386美元,等於砍掉99%以上!背後原因是4680產量沒爆發、Cybertruck銷售遠低於預期、EV市場整體放緩,加上Tesla內部策略轉向先優化自家產線。
這到底代表Tesla放棄4680?還是只是暫時調整、蓄勢待發?2026年四款新電池真的會讓Robotaxi、Cybertruck續航與價格大升級嗎?

為什麼馬達一定要用矽鋼片?不用銅,鋁,銀!真正原因超反直覺

 


你有沒有想過,為什麼馬達裡面都會看到一片一片堆起來的鐵片?

為什麼不直接用一整塊鐵心?甚至有人會問,銅、鋁、銀這些更高級的金屬,能不能用在馬達裡?


答案完全出乎很多人的意料。

馬達之所以一定要用矽鋼片,而不能用銅、鋁、銀或整塊鐵,是因為馬達裡的磁場是交流磁場。磁場只要一變動,就會在金屬內部產生渦流。如果材料導電率太高,渦流就會像高速公路一樣四處亂跑,整顆鐵心會瞬間爆熱,效率大幅下降,甚至直接燒毀。


矽鋼片透過加入 3 到 4% 的矽,讓材料的電阻提高、渦流降低,同時又保留高磁導率,讓磁場能順暢通過。這讓馬達能「導磁但不導電」,是所有交流馬達、變壓器與電動車馬達的最佳材料。


這支影片一次講清楚:

為什麼鐵心不能用整塊?

為什麼銅、鋁、銀完全不行?

矽鋼片的功能到底是什麼?

定子和轉子的矽鋼片又有什麼差異?


看完你就會知道,馬達看起來在轉,其實是在靠矽鋼片保命。

2026年1月19日 星期一

從抽象符號到微米工藝:電容器的演變史-電容符號->電解電容->薄膜電容->超級電容.....鋰電池

從符號到實體:電容器與電池工藝的極致演變

電容器,這個在電路圖上看似簡單的符號,其背後卻蘊藏著電子元件材料學、化學與精密製造工藝的漫長演進。今天,我們將深入探討電容器的發展歷程,從其最基本的物理原理,直到現代的尖端應用。

1. 符號的誕生:電容的基本原理與圖形表示

在電路圖中,電容器通常由兩條平行線段或一條直線搭配一條弧線表示。這簡潔的符號,代表著其核心功能:儲存電荷與電場能量



  • 無極性電容符號: 兩條等長的平行線 —| |—。常見於陶瓷電容、薄膜電容。
  • 有極性電容符號: 一條直線與一條弧線 —| ( — 或直線加正號 —|+ |—。主要用於電解電容、鉭質電容,弧線或帶負號的一側代表負極。

無論是何種符號,它們都基於同一物理原理:兩個導體板(極板)之間夾著絕緣介質(電介質),當施加電壓時,電荷在極板上累積。

2. 電解電容:捲繞工藝與化成藝術

電解電容是目前應用最廣泛、成本效益最高的有極性電容之一。它的問世,極大地推動了早期電子產品的小型化和普及。



經典的捲繞結構

打開一個鋁電解電容,你會看到:

  • 正極鋁箔: 表面經過蝕刻處理,變得粗糙多孔,以增加實際表面積。
  • 氧化鋁介質層: 在正極鋁箔表面通過「化成」(Forming)工藝生成一層極薄的 Al2O3 絕緣層,作為電容器的電介質。
  • 電解紙: 夾在正負極鋁箔之間,浸潤著液態電解液。
  • 負極鋁箔: 主要作用是與電解液接觸,作為導體引出負極。

電子學冷知識:電解液的真實身份

在這裡必須澄清一個關鍵概念:電解液才是真正的「負極」!

很多初學者誤以為電流是像水一樣流過電解液。但事實上:

  1. 那張「負極鋁箔」其實只是集流體,負責將電導出到引腳。
  2. 因為正極鋁箔表面像大峽谷一樣坑坑洞洞,固體金屬無法完全貼合。
  3. 電解液的功能是「填縫」:它像水一樣流進微小的坑洞,將負電位完美地延伸到氧化膜(介質)的門口。
  4. 電子並未穿透:電子只是被送到氧化膜的表面,隔著膜與正極的電荷「互相感應」。如果電子穿過去了,那就是漏電或短路!

製造工藝的挑戰與權衡

  • 蝕刻: 透過化學反應在鋁箔表面形成微觀結構,以幾何倍數擴大電容量。蝕刻效果的均勻性直接影響電容的一致性。
  • 化成: 將蝕刻後的正極鋁箔浸入特定電解質溶液中,施加電壓,使其表面氧化形成緻密的 Al2O3 介質層。化成電壓決定了電容的耐壓值。
  • 捲繞: 將正負極鋁箔和電解紙精密捲繞起來,這需要極高的機械精度,以避免短路和保證緊密度。
  • 浸漬與密封: 將捲繞好的芯子浸入電解液中,再進行密封,防止電解液揮發。

優缺點分析

  • 優點: 單位體積電容量巨大,成本低廉,適合低頻濾波和儲能。
  • 缺點:
    • 壽命問題: 電解液在高溫下會逐漸蒸發,導致電容失效(ESR 升高、容量下降)。
    • ESR 較高: 電解液的電導率限制了其在高頻應用中的性能。
    • 極性敏感: 反向電壓會導致電介質層被破壞。

3. 薄膜電容:精密疊層與介質選擇的藝術

與電解電容不同,薄膜電容使用塑膠薄膜作為電介質,如聚酯(PET)、聚丙烯(PP)、聚苯乙烯(PS)等。



製造工藝:從薄膜到金屬化

  • 薄膜拉伸: 將聚合物材料拉伸成極薄(幾微米甚至亞微米級)的薄膜。
  • 金屬化: 在薄膜的一側或兩側真空蒸鍍極薄的金屬層(如鋁或鋅),作為電容器的極板。這種自癒合特性使其即使部分擊穿也能繼續工作。
  • 捲繞或疊層: 將金屬化薄膜捲繞或疊層,然後引出電極。

物理核心:絕緣的果醬吐司

薄膜電容的結構就像塗了果醬的三明治,果醬是導電層,吐司是塑膠薄膜。重點在於:電子絕對不能穿過塑膠薄膜。

電子只能在金屬鍍層上移動,並在薄膜兩側建立強大的電場。這股「想過卻過不去」的電場張力,正是電容儲存能量的本質。

優缺點分析

  • 優點: 高穩定性(介質損耗小)、高頻特性好(低 ESR/ESL)、無極性。
  • 缺點: 單位體積容量相對較小,成本相對較高。

4. 陶瓷電容:多層疊片與微型化的極致

陶瓷電容以其超小的體積和寬廣的頻率響應,成為現代電子產品中不可或缺的元件。



MLCC(多層陶瓷電容器)的崛起

現代陶瓷電容主要指 MLCC。其製造工藝是微型化和精密疊層的典範:

  1. 漿料製備: 將高介電常數的陶瓷粉末(如 BaTiO3)與黏合劑、溶劑混合製成漿料。
  2. 流延成膜: 將漿料流延成極薄的陶瓷生片(Green Sheet)。
  3. 印刷電極: 在陶瓷生片上精密印刷內部電極漿料(通常是鎳或銅)。
  4. 疊片與共燒: 將印刷好的生片層層堆疊,在高溫下燒結成緻密的陶瓷塊。

優缺點分析

  • 優點: 極小體積(SMD主力)、高頻特性優異、成本效益高。
  • 缺點: 容量受溫度與電壓影響較大(如 X5R, X7R 特性)、易受機械應力導致裂紋。

5. 超級電容(EDLC):跨越物理與化學的邊界

當工程師不滿足於電解電容的容量,但又嫌電池充放電太慢時,超級電容應運而生。



雙電層原理:奈米級的物理吸附

超級電容利用亥姆霍茲層(Helmholtz Double Layer)。當電極插入電解液並施加電壓時,正負離子會分別吸附在相反極性的電極表面,形成只有幾奈米厚的「雙電層」。

這就像是物理符號的極致展現:正負電荷僅隔著幾顆原子的距離遙遙相望,距離越近,容量越大。

6. 鋰離子電池:電化學的深層儲能

如果說電容是將電子「堆在門口」,那麼鋰電池就是將鋰離子「請進房間」。這就是嵌入(Intercalation)機制

電子與離子的雙重流動

  • 外部電路: 電子從負極流向正極(放電時)。
  • 內部微觀: 鋰離子穿過隔離膜,在正負極材料的晶格之間穿梭(Rocking Chair 機制)。這比電容的單純電荷累積要複雜得多,也因此帶來了能量密度的飛躍。

7. 終極演變:乾式電極工藝(Dry Electrode Process)

這正是目前特斯拉(Tesla)與各大電池廠的兵家必爭之地。它代表了製造工藝從「液態化學」回歸「物理加工」的重大革新。

傳統濕式工藝 vs. 乾式工藝

  • 傳統濕式: 需要將活性物質混合有毒溶劑(NMP),塗佈後再用巨大的烘烤箱烤乾。耗能且限制了電極厚度。
  • 乾式工藝: 使用 PTFE(鐵氟龍)纖維化技術,像壓麵團一樣直接將粉末滾壓成薄膜。

優勢總結

乾式工藝不需要烘烤,電極可以做得更厚(能量密度更高),且完全省去了溶劑回收的成本與環保問題。這是製造效率與物理密度的極致追求。


總結:從符號到工藝的輪迴

回顧這段演變史,我們會發現一個有趣的現象:

  • 符號階段: 我們關注正負極板的幾何距離。
  • 電解電容: 我們用蝕刻增加表面積,用捲繞縮小體積。
  • 超級電容: 我們用奈米孔隙將表面積推向極致。
  • 鋰電池: 我們引入化學嵌入打破物理儲能的上限。
  • 乾式工藝: 我們回歸最純粹的物理壓製,去除化學溶劑的束縛。

電子學的發展,就是一部不斷在微觀結構上「寸土必爭」的歷史。


2026年1月18日 星期日

你知道嗎?電解電容裡的「水」跟汽車電瓶裡的「水」,功能完全不一樣!




在電子工程的世界裡,我們常會遇到「液體」元件。最常見的就是主機板上的鋁電解電容,以及車庫裡的鉛酸電瓶

它們裡面都裝滿了化學液體,我們通稱「電解液」。但你知道嗎?雖然名字一樣,但它們在微觀世界裡扮演的角色,根本是天壤之別

如果不把它們分清楚,你就無法理解為什麼電容會「爆漿」,而電瓶需要「補水」。

一、電解電容的液體:它是「地形探險家」(液態導線)

我們先看看電解電容。當你把一顆電容剖開,會看到沾滿液體的紙。很多人以為這液體像電池一樣是用來產生化學反應的。

錯!在電解電容裡,電解液就是「負極」本身。

這聽起來很違反直覺,讓我們從微觀結構來看:

  1. 崎嶇的峽谷(正極):
    為了在小小的體積內塞進超大容量,電容的正極鋁箔經過了劇烈的「蝕刻工藝」。如果你用顯微鏡看,鋁箔表面不是平的,而是像科羅拉多大峽谷一樣,充滿了無數深不見底的微細坑洞。

  2. 固體進不去:
    如果你直接拿另一片金屬鋁箔(負極箔)貼上去,金屬太硬了,只能蓋在「峽谷」的頂端,底下的巨大表面積完全接觸不到,電容容量會瞬間縮水 90%。

  3. 液體填滿一切:
    這時候,電解液登場了。它像水一樣流進每一個微小的坑洞、隧道,完全貼合在正極表面的氧化膜上。
【結論】:
電解電容的電解液,功能是「物理填充」「傳導」。它就像是液態的導線,負責把電子送到那些固體金屬接觸不到的深處。在理想狀態下,它只導電,不參與化學反應(不被消耗)。

二、汽車電瓶的液體:它是「燃料」(化學原料)

接著我們看汽車的 12V 鉛酸電池。這裡面的液體(稀硫酸),命運就完全不同了。

在電池裡,電解液是主角,它是化學反應的原料

  • 放電就是「吃掉」硫酸: 當你發動車子(放電)時,硫酸(H₂SO₄)會真的跑進極板裡,跟鉛產生化學反應,變成硫酸鉛。
  • 變魔術: 在這個過程中,原本酸溜溜的硫酸,會因為反應而逐漸變成水(H₂O)
    • 滿電時:液體很酸(比重高)。
    • 沒電時:液體變淡了,接近水(比重低)。
【結論】:
汽車電瓶的電解液,功能是「化學反應物」。它就像是燃料,用一點少一點(雖然充電可以還原,但本質上它是被消耗的材料)。

三、終極比一比:橋樑 vs. 燃料

為了讓你一眼看懂,我們來個超級比一比:

比較項目 電解電容 (Electrolytic Capacitor) 汽車電瓶 (Lead-Acid Battery)
液體成分 乙二醇、硼酸等溶劑 (弱酸/中性) 稀硫酸 (強酸)
核心身份 液態的電極 (Liquid Cathode) 化學燃料 (Reactant)
運作原理 物理儲能 (電荷吸附) 化學儲能 (物質轉換)
放電變化 濃度不變,只是電子在跑 濃度變低,硫酸變成了水
乾掉後果 接觸不良 → 容量歸零 (失效) 原料沒了 → 發不出電 (失效)
一句話比喻 它是「填滿坑洞的水泥」 它是「煮湯用的湯底」

工程師的總結

下次當你看到電解電容和電瓶時,請帶著不同的敬意看它們:

  • 對電瓶: 我們要關心它的「濃度」,因為它是靠犧牲自己(化學變化)來給你能量。
  • 對電容: 我們要關心它的「濕潤度」,因為它是靠無孔不入(物理接觸)來撐起巨大的容量。

雖然都是「水」,但在電子的世界裡,一個是橋樑,一個是燃料,這就是電子學迷人的微觀細節。